Hi All,
Anyone able to unpick the mathematics below? My poor wee brain simply isn't up to grasping it, so if anyone can do a Maths Translation for Dummies, I would be very grateful!
Aseem Malhotra referenced a study in this article
https://www.europeanscientist.com/en/article-of-the-week/covid-19-and-the-elephant-in-the-room/
He made the statement that
Public Health England have said now is the best time to quit smoking, citing research from China concluding that smokers were 14 times more likely to get severe disease after contracting COVID-19. (13)
So I followed his reference to here:
https://journals.lww.com/cmj/Abstra...f_factors_associated_with_disease.99363.aspx#
and found this:
Seventy-eight patients with COVID-19-induced pneumonia met the inclusion criteria and were included in this study. Efficacy evaluation at 2 weeks after hospitalization indicated that 11 patients (14.1%) had deteriorated, and 67 patients (85.9%) had improved/stabilized. The patients in the progression group were significantly older than those in the disease improvement/stabilization group (66 [51, 70] vs. 37 [32, 41] years, U = 4.932, P = 0.001). The progression group had a significantly higher proportion of patients with a history of smoking than the improvement/stabilization group (27.3% vs. 3.0%, χ2 = 9.291, P = 0.018). For all the 78 patients, fever was the most common initial symptom, and the maximum body temperature at admission was significantly higher in the progression group than in the improvement/stabilization group (38.2 [37.8, 38.6] vs. 37.5 [37.0, 38.4]°C, U = 2.057, P = 0.027). Moreover, the proportion of patients with respiratory failure (54.5% vs. 20.9%, χ2 = 5.611, P = 0.028) and respiratory rate (34 [18, 48] vs. 24 [16, 60] breaths/min, U = 4.030, P = 0.004) were significantly higher in the progression group than in the improvement/stabilization group. C-reactive protein was significantly elevated in the progression group compared to the improvement/stabilization group (38.9 [14.3, 64.8] vs. 10.6 [1.9, 33.1] mg/L, U = 1.315, P = 0.024). Albumin was significantly lower in the progression group than in the improvement/stabilization group (36.62 ± 6.60 vs. 41.27 ± 4.55 g/L, U = 2.843, P = 0.006). Patients in the progression group were more likely to receive high-level respiratory support than in the improvement/stabilization group (χ2 = 16.01, P = 0.001). Multivariate logistic analysis indicated that age (odds ratio [OR], 8.546; 95% confidence interval [CI]: 1.628–44.864; P = 0.011), history of smoking (OR, 14.285; 95% CI: 1.577–25.000; P = 0.018), maximum body temperature at admission (OR, 8.999; 95% CI: 1.036–78.147, P = 0.046), respiratory failure (OR, 8.772, 95% CI: 1.942–40.000; P = 0.016), albumin (OR, 7.353, 95% CI: 1.098–50.000; P = 0.003), and C-reactive protein (OR, 10.530; 95% CI: 1.224−34.701, P = 0.028) were risk factors for disease progression.
So, is Malhotra's statement that
that smokers were 14 times more likely to get severe disease after contracting COVID-19
bourne out by the mathematical hieroglyphs quoted above?
I do, of course, appreciate that there is a lot of other stuff going on too - CRP, albumin, degree of temperature, age and all the other co-morbidities we are familiar with discussing regarding COVID-19.