# Maximum sub-sequence sum such that indices of any two adjacent elements differs at least by 3

Given an array **arr[]** of integers, the task is to find the **maximum sum** of any sub-sequence in the array such that any two adjacent elements in the selected sequence have at least a difference of 3 in their indices in the given array.

In other words, if you select **arr[i]** then the next element you can select is **arr[i + 3]**, **arr[i + 4]**, and so on… but you cannot select **arr[i + 1]** and **arr[i + 2]**.**Examples:**

Input:arr[] = {1, 2, -2, 4, 3}Output:5

{1, 4} and {2, 3} are the only sub-sequences

with maximum sum.Input:arr[] = {1, 2, 72, 4, 3, 9}Output:81

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Naive approach:** We generate all possible subsets of the array and check if the current subset satisfies the condition.If yes, then we compare its sum with the largest sum we have obtained till now.It is not an efficient approach as it takes exponential time .**Efficient approach:** This problem can be solved using dynamic programming. Letâ€™s decide the states of the dp. Let **dp[i]** be the largest possible sum for the sub-sequence staring from index **0** and ending at index **i**. Now, we have to find a recurrence relation between this state and a lower-order state.

In this case for an index **i**, we will have two choices:

- Choose the current index: In this case, the relation will be
**dp[i] = arr[i] + dp[i – 3]**. - Skip the current index: Relation will be
**dp[i] = dp[i – 1]**.

We will choose the path that maximizes our result. Thus the final relation will be: **dp[i] = max(dp[i – 3] + arr[i], dp[i – 1])**

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the maximum sum` `// of the sub-sequence such that two` `// consecutive elements have a difference of` `// at least 3 in their indices` `// in the given array` `int` `max_sum(` `int` `a[], ` `int` `n)` `{` ` ` `int` `dp[n];` ` ` `// If there is a single element in the array` ` ` `if` `(n == 1) {` ` ` `// Either select it or don't` ` ` `dp[0] = max(0, a[0]);` ` ` `}` ` ` `// If there are two elements` ` ` `else` `if` `(n == 2) {` ` ` `// Either select the first` ` ` `// element or don't` ` ` `dp[0] = max(0, a[0]);` ` ` `// Either select the first or the second element` ` ` `// or don't select any element` ` ` `dp[1] = max(a[1], dp[0]);` ` ` `}` ` ` `else` `if` `(n >= 3) {` ` ` `// Either select the first` ` ` `// element or don't` ` ` `dp[0] = max(0, a[0]);` ` ` `// Either select the first or the second element` ` ` `// or don't select any element` ` ` `dp[1] = max(a[1], max(0, a[0]));` ` ` `// Either select first, second, third or nothing` ` ` `dp[2] = max(a[2], max(a[1], max(0, a[0])));` ` ` `int` `i = 3;` ` ` `// For the rest of the elements` ` ` `while` `(i < n) {` ` ` `// Either select the best sum till` ` ` `// previous_index or select the current` ` ` `// element + best_sum till index-3` ` ` `dp[i] = max(dp[i - 1], a[i] + dp[i - 3]);` ` ` `i++;` ` ` `}` ` ` `}` ` ` `return` `dp[n - 1];` `}` `// Driver code` `int` `main()` `{` ` ` `int` `arr[] = { 1, 2, -2, 4, 3 };` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `cout << max_sum(arr, n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` `// Function to return the maximum sum` `// of the sub-sequence such that two` `// consecutive elements have a difference of` `// at least 3 in their indices` `// in the given array` `static` `int` `max_sum(` `int` `a[], ` `int` `n)` `{` ` ` `int` `[]dp = ` `new` `int` `[n];` ` ` `// If there is a single element in the array` ` ` `if` `(n == ` `1` `)` ` ` `{` ` ` `// Either select it or don't` ` ` `dp[` `0` `] = Math.max(` `0` `, a[` `0` `]);` ` ` `}` ` ` `// If there are two elements` ` ` `else` `if` `(n == ` `2` `)` ` ` `{` ` ` `// Either select the first` ` ` `// element or don't` ` ` `dp[` `0` `] = Math.max(` `0` `, a[` `0` `]);` ` ` `// Either select the first or the second element` ` ` `// or don't select any element` ` ` `dp[` `1` `] = Math.max(a[` `1` `], dp[` `0` `]);` ` ` `}` ` ` `else` `if` `(n >= ` `3` `)` ` ` `{` ` ` `// Either select the first` ` ` `// element or don't` ` ` `dp[` `0` `] = Math.max(` `0` `, a[` `0` `]);` ` ` `// Either select the first or the second element` ` ` `// or don't select any element` ` ` `dp[` `1` `] = Math.max(a[` `1` `], Math.max(` `0` `, a[` `0` `]));` ` ` `// Either select first, second, third or nothing` ` ` `dp[` `2` `] = Math.max(a[` `2` `], Math.max(a[` `1` `], Math.max(` `0` `, a[` `0` `])));` ` ` `int` `i = ` `3` `;` ` ` `// For the rest of the elements` ` ` `while` `(i < n)` ` ` `{` ` ` `// Either select the best sum till` ` ` `// previous_index or select the current` ` ` `// element + best_sum till index-3` ` ` `dp[i] = Math.max(dp[i - ` `1` `], a[i] + dp[i - ` `3` `]);` ` ` `i++;` ` ` `}` ` ` `}` ` ` `return` `dp[n - ` `1` `];` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `arr[] = { ` `1` `, ` `2` `, -` `2` `, ` `4` `, ` `3` `};` ` ` `int` `n = arr.length;` ` ` `System.out.println(max_sum(arr, n));` `}` `}` `// This code is contributed by Rajput-Ji` |

## Python3

`# Python3 implementation of the approach` `# Function to return the maximum sum` `# of the sub-sequence such that two` `# consecutive elements have a difference of` `# at least 3 in their indices` `# in the given array` `def` `max_sum(a, n) :` ` ` `dp ` `=` `[` `0` `]` `*` `n;` ` ` `# If there is a single element in the array` ` ` `if` `(n ` `=` `=` `1` `) :` ` ` `# Either select it or don't` ` ` `dp[` `0` `] ` `=` `max` `(` `0` `, a[` `0` `]);` ` ` `# If there are two elements` ` ` `elif` `(n ` `=` `=` `2` `) :` ` ` `# Either select the first` ` ` `# element or don't` ` ` `dp[` `0` `] ` `=` `max` `(` `0` `, a[` `0` `]);` ` ` `# Either select the first or the second element` ` ` `# or don't select any element` ` ` `dp[` `1` `] ` `=` `max` `(a[` `1` `], dp[` `0` `]);` ` ` ` ` `elif` `(n >` `=` `3` `) :` ` ` `# Either select the first` ` ` `# element or don't` ` ` `dp[` `0` `] ` `=` `max` `(` `0` `, a[` `0` `]);` ` ` `# Either select the first or the second element` ` ` `# or don't select any element` ` ` `dp[` `1` `] ` `=` `max` `(a[` `1` `], ` `max` `(` `0` `, a[` `0` `]));` ` ` `# Either select first, second, third or nothing` ` ` `dp[` `2` `] ` `=` `max` `(a[` `2` `], ` `max` `(a[` `1` `], ` `max` `(` `0` `, a[` `0` `])));` ` ` `i ` `=` `3` `;` ` ` `# For the rest of the elements` ` ` `while` `(i < n) :` ` ` `# Either select the best sum till` ` ` `# previous_index or select the current` ` ` `# element + best_sum till index-3` ` ` `dp[i] ` `=` `max` `(dp[i ` `-` `1` `], a[i] ` `+` `dp[i ` `-` `3` `]);` ` ` `i ` `+` `=` `1` `;` ` ` `return` `dp[n ` `-` `1` `];` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `arr ` `=` `[ ` `1` `, ` `2` `, ` `-` `2` `, ` `4` `, ` `3` `];` ` ` `n ` `=` `len` `(arr);` ` ` `print` `(max_sum(arr, n));` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` ` ` `// Function to return the maximum sum` `// of the sub-sequence such that two` `// consecutive elements have a difference of` `// at least 3 in their indices` `// in the given array` `static` `int` `max_sum(` `int` `[]a, ` `int` `n)` `{` ` ` `int` `[]dp = ` `new` `int` `[n];` ` ` `// If there is a single element in the array` ` ` `if` `(n == 1)` ` ` `{` ` ` `// Either select it or don't` ` ` `dp[0] = Math.Max(0, a[0]);` ` ` `}` ` ` `// If there are two elements` ` ` `else` `if` `(n == 2)` ` ` `{` ` ` `// Either select the first` ` ` `// element or don't` ` ` `dp[0] = Math.Max(0, a[0]);` ` ` `// Either select the first or the second element` ` ` `// or don't select any element` ` ` `dp[1] = Math.Max(a[1], dp[0]);` ` ` `}` ` ` `else` `if` `(n >= 3)` ` ` `{` ` ` `// Either select the first` ` ` `// element or don't` ` ` `dp[0] = Math.Max(0, a[0]);` ` ` `// Either select the first or the second element` ` ` `// or don't select any element` ` ` `dp[1] = Math.Max(a[1], Math.Max(0, a[0]));` ` ` `// Either select first, second, third or nothing` ` ` `dp[2] = Math.Max(a[2], Math.Max(a[1], Math.Max(0, a[0])));` ` ` `int` `i = 3;` ` ` `// For the rest of the elements` ` ` `while` `(i < n)` ` ` `{` ` ` `// Either select the best sum till` ` ` `// previous_index or select the current` ` ` `// element + best_sum till index-3` ` ` `dp[i] = Math.Max(dp[i - 1], a[i] + dp[i - 3]);` ` ` `i++;` ` ` `}` ` ` `}` ` ` `return` `dp[n - 1];` `}` `// Driver code` `static` `public` `void` `Main ()` `{` ` ` ` ` `int` `[]arr = { 1, 2, -2, 4, 3 };` ` ` `int` `n = arr.Length;` ` ` `Console.Write(max_sum(arr, n));` `}` `}` `// This code is contributed by ajit..` |

## Javascript

`<script>` ` ` `// Javascript implementation of the approach` ` ` ` ` `// Function to return the maximum sum` ` ` `// of the sub-sequence such that two` ` ` `// consecutive elements have a difference of` ` ` `// at least 3 in their indices` ` ` `// in the given array` ` ` `function` `max_sum(a, n)` ` ` `{` ` ` `let dp = ` `new` `Array(n);` ` ` `// If there is a single element in the array` ` ` `if` `(n == 1)` ` ` `{` ` ` `// Either select it or don't` ` ` `dp[0] = Math.max(0, a[0]);` ` ` `}` ` ` `// If there are two elements` ` ` `else` `if` `(n == 2)` ` ` `{` ` ` `// Either select the first` ` ` `// element or don't` ` ` `dp[0] = Math.max(0, a[0]);` ` ` `// Either select the first or the second element` ` ` `// or don't select any element` ` ` `dp[1] = Math.max(a[1], dp[0]);` ` ` `}` ` ` `else` `if` `(n >= 3)` ` ` `{` ` ` `// Either select the first` ` ` `// element or don't` ` ` `dp[0] = Math.max(0, a[0]);` ` ` `// Either select the first or the second element` ` ` `// or don't select any element` ` ` `dp[1] = Math.max(a[1], Math.max(0, a[0]));` ` ` `// Either select first, second, third or nothing` ` ` `dp[2] = Math.max(a[2], Math.max(a[1], Math.max(0, a[0])));` ` ` `let i = 3;` ` ` `// For the rest of the elements` ` ` `while` `(i < n)` ` ` `{` ` ` `// Either select the best sum till` ` ` `// previous_index or select the current` ` ` `// element + best_sum till index-3` ` ` `dp[i] = Math.max(dp[i - 1], a[i] + dp[i - 3]);` ` ` `i++;` ` ` `}` ` ` `}` ` ` `return` `dp[n - 1];` ` ` `}` ` ` ` ` `let arr = [ 1, 2, -2, 4, 3 ];` ` ` `let n = arr.length;` ` ` ` ` `document.write(max_sum(arr, n));` `</script>` |

**Output:**

5

**Time Complexity:** O(N) **Auxiliary Space:** O(N)